]

Algebraic fractions Exercise A, Question 1

Question:

Factorise completely

(a) $2x^3 - 13x^2 - 7x$

(b) $9x^2 - 16$

(c) $x^4 + 7x^2 - 8$

Solution:

(a)

$$2x^3 - 13x^2 - 7x$$

 $= x (2x^2 - 13x - 7)$
 $= x (2x^2 + x - 14x - 7)$
 $= x [x (2x + 1) - 7 (2x + 1)]$
 $= x (2x + 1) (x - 7)$
(b)

 $9x^{2} - 16$ = (3x)² - 4² = (3x + 4) (3x - 4)

(c)

 $x^{4} + 7x^{2} - 8$ = $y^{2} + 7y - 8$ = $y^{2} - y + 8y - 8$ = y (y - 1) + 8 (y - 1)= (y - 1) (y + 8)= $(x^{2} - 1) (x^{2} + 8)$ = (x + 1) (x - 1) $(x^{2} + 8)$ squares,

© Pearson Education Ltd 2008

x is a common factor So take x outside the bracket. For the quadratic, ac = -14 and 1 - 14 = -13 = bFactorise

This is a difference of two squares, $(3x)^2$ and 4^2 Use $x^2 - y^2 = (x + y) (x - y)$

Let $y = x^2$

ac = -8 and -1 + 8 = +7 = bFactorise

Replace y by x^2 $x^2 - 1$ is a difference of two so use $x^2 - y^2 = (x + y) (x - y)$

part (b)

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions Exercise A, Question 2

Question:

Find the value of

(a) 81 $\frac{1}{2}$ (b) 81 $\frac{3}{4}$ (c) 81 $\frac{3}{4}$.

Solution:

(a) Use $a^{\frac{1}{m}} = m \sqrt{a}$, so $a^{\frac{1}{2}} = \sqrt{a}$ 811/2 $=\sqrt{81}$ = 9 (b) $81\frac{3}{4}$ $a^{\frac{n}{m}} = m \sqrt{(a^n)}$ or $(m \sqrt{a})^n$ = (4 It is easier to find the fourth root, $\sqrt{81}$) 3 then cube this 4 $= 3^{3}$ $\sqrt{81} = 3$ because $3 \times 3 \times 3 \times 3 = 81$ = 27 (c)

$$81 - \frac{3}{4} = \frac{1}{81^{3/4}}$$

$$= \frac{1}{27}$$
Use $a^{-m} = \frac{1}{a^m}$
Use the answer from

Algebraic fractions Exercise A, Question 3

Question:

(a) Write down the value of $8^{\frac{1}{3}}$.

(b) Find the value of $8^{-\frac{2}{3}}$.

Solution:

(a)	
$8\frac{1}{3}$	
$= 3\sqrt{8}$	
= 2	
(b)	
8 -	
$\frac{2}{3}$	
$\frac{2}{2} = (^{3})^{2}$	
$(8_3 \sqrt{8})^2$	$(m a)^n$
$= 2^2 = 4$	
8	
$\frac{2}{3} \qquad = \qquad \frac{2}{8 \frac{2}{3}}$	
$= \frac{1}{4}$	

© Pearson Education Ltd 2008

Use $a^{\frac{1}{m}} = m \sqrt{a}$, so $a^{\frac{1}{3}} = 3 \sqrt{a}$

 $3\sqrt{8} = 2$ because $2 \times 2 \times 2 = 8$

First find
$$8\frac{2}{3}a\frac{n}{m} = m\sqrt{(a^n)}$$
 or

Use
$$a^{-m} = \frac{1}{a^m}$$

Divide

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Algebraic fractions Exercise A, Question 4

Question:

(a) Find the value of $125^{\frac{4}{3}}$.

(b) Simplify $24x^2 \div 18x^{\frac{4}{3}}$.

Solution:

(a)	
$125\frac{4}{3}$	$a \frac{n}{m} = m \sqrt{(a^n)}$ or $(m \sqrt{a})^n$
$= (\sqrt[3]{125})^{4}$	It is easier to find the cube root,
	then the fourth power
$= 5^4$	$\sqrt[3]{125} = 5$ because $5 \times 5 \times 5 = 125$
= 625	
(b)	
$24x^2 \div 18x$	
4 3	
$24x^2$ $4x^2$	
$= \frac{4}{18x\frac{4}{3}} = \frac{4}{3x\frac{4}{3}}$	by 6
$=\frac{4x\frac{2}{3}}{3}$	Use $a^m \div a^n = a^{m-n}$
(or $\frac{4}{3}x$	
$\left(\frac{2}{2}\right)$	
<i>3 J</i>	

Algebraic fractions Exercise A, Question 5

Question:

(a) Express $\sqrt{80}$ in the form $a\sqrt{5}$, where *a* is an integer.

(b) Express $(4 - \sqrt{5})^2$ in the form $b + c\sqrt{5}$, where b and c are integers.

Solution:

(a)

$$\sqrt[4]{80} = \sqrt{16} \times \sqrt{5}$$

 $= 4\sqrt{5}$ (a = 4)
(b)
 $(4 - \sqrt{5})^2$
 $= 4(4 - \sqrt{5}) - \sqrt{5}(4 - \sqrt{5})$
 $= 4(4 - \sqrt{5}) - \sqrt{5}(4 - \sqrt{5})$
 $= 16 - 4\sqrt{5} - 4\sqrt{5} + 5$
 $= 21 - 8\sqrt{5}$
(b = 21 and c = -8)
Multiply the brackets.

Algebraic fractions Exercise A, Question 6

Question:

(a) Expand and simplify
$$(4 + \sqrt{3}) (4 - \sqrt{3})$$
.

(b) Express $\frac{26}{4+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are integers.

Solution:

(a)
(4 +
$$\sqrt{3}$$
) (4 - $\sqrt{3}$)
= 4 (4 - $\sqrt{3}$) + $\sqrt{3}$ (4 - $\sqrt{3}$)
= 16 - 4 $\sqrt{3}$ + $4\sqrt{3}$ - 3
= 13
(b)
 $\frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}}$
(b)
 $\frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}}$
(c)
 $\frac{26}{4 + \sqrt{3}} \times \frac{4 - \sqrt{3}}{4 - \sqrt{3}}$
(c)
 $\frac{26}{(4 + \sqrt{3})} (4 - \sqrt{3})$
 $\frac{26(4 - \sqrt{3})}{13}$
 $\frac{1}{88 - 2\sqrt{3}}$
(*a* = 8 and *b* = -2)

Algebraic fractions Exercise A, Question 7

Question:

(a) Express $\sqrt{108}$ in the form $a\sqrt{3}$, where a is an integer.

(b) Express $(2 - \sqrt{3})^2$ in the form $b + c\sqrt{3}$, where b and c are integers to be found.

Solution:

(a)

$$\sqrt[4]{108} = \sqrt{36} \times \sqrt{3}$$

 $= 6\sqrt{3}$ (a = 6)
(b)
 $(2 - \sqrt{3})^2$
 $= (2 - \sqrt{3})(2 - \sqrt{3})$
 $= 2(2 - \sqrt{3}) - \sqrt{3}(2 - \sqrt{3})$
 $= 4 - 2\sqrt{3} - 2\sqrt{3} + 3$
 $= 7 - 4\sqrt{3}$
(b = 7 and c = -4)
Multiply the brackets

Algebraic fractions Exercise A, Question 8

Question:

(a) Express $(2\sqrt{7})^{-3}$ in the form $a\sqrt{7}$, where *a* is an integer.

(b) Express $(8 + \sqrt{7})$ $(3 - 2\sqrt{7})$ in the form $b + c\sqrt{7}$, where b and c are integers.

(c) Express $\frac{6+2\sqrt{7}}{3-\sqrt{7}}$ in the form $d+e\sqrt{7}$, where d and e are integers.

Solution:

(a)
(2
$$\sqrt{7}$$
) $3 = 2\sqrt{7} \times 2\sqrt{7} \times 2\sqrt{7}$
 $= 8(\sqrt{7} \times \sqrt{7} \times \sqrt{7})$
 $= 8(7\sqrt{7})$
 $= 8(3-2\sqrt{7})$
 $= 2\sqrt{7}$
 $= 2\sqrt{7}$
 $= 2\sqrt{7}$
 $= 2\sqrt{7}$
 $= 2\sqrt{7}$
 $\sqrt{7} \times 2\sqrt{7} = 2 \times 7$
 $\sqrt{7} \times 2\sqrt{7} = 2$

Algebraic fractions Exercise A, Question 9

Question:

Solve the equations

(a) $x^2 - x - 72 = 0$

(b) $2x^2 + 7x = 0$

(c) $10x^2 + 9x - 9 = 0$

Solution:

(a) $x^{2} - x - 72$ (x + 8) (x - 9) x + 8 = 0, x - 9 = x = -8, x = 9	 = 0 = 0 ⁰ the equation could be solved using the formula or 'completing 	Although ae quadratic	square', factorisation is quicker.	Factorise
(b) $2x^{2} + 7x$ x (2x + 7) x = 0, 2x + 7 = 0 $x = 0, x = -\frac{7}{2}$	= 0 $= 0$ forget the <i>x</i> = 0 solution.	Don't	the factor x.	Use
(b) $2x^{2} + 7x$ x (2x + 7) x = 0, 2x + 7 = 0 $x = 0, x = -\frac{7}{2}$	= 0 $= 0$ forget the $x = 0$ solution.	Don't	the factor x.	Use
(c) $10x^2 + 9x - 9$ (2x + 3) (5x - 3) 2x + 3 = 0, 5x - 3 $x = -\frac{3}{2}, x = \frac{3}{5}$	= 0 3) $= 0$ 3 = 0	Facto	orise	

Algebraic fractions Exercise A, Question 10

Question:

Solve the equations, giving your answers to 3 significant figures

(a) $x^2 + 10x + 17 = 0$

(b) $2x^2 - 5x - 1 = 0$

(c) $(2x-3)^2 = 7$

Solution:

(a)

$x^2 + 10x + 17 = 0$	Since the question requires answers to	
$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$	3 significant figures, you know that the	
quadratic will not factorise.		
a = 1 , $b = 10$, $c = 17$		
x	$= \frac{-10 \pm \sqrt{(100 - 68)}}{2}$	Use the quadratic formula, quoting
the formula first.		
	$= \frac{-10 \pm \sqrt{32}}{2}$	
	$=\frac{-10\pm 5.656\ldots}{2}$	Intermediate working should be to
at least 4 sig. figs.		
	$=\frac{-10+5.656\dots}{2}$,	
	<u>-10-5.656</u> 2	
x = -2.17, $x = -7.83$	Divide by 2, and round to 3 sig. figs.	
Alternative method:		
$x^2 + 10x + 17$	= 0	
$x^2 + 10x$	= -17	Subtract 17 to get LHS in the required form.
$(x+5)^2-25$	= -17	Complete the square for $x^2 + 10x$
$(x+5)^{2}$	= -17 + 25	Add 25 to both sides
$(x+5)^{2}$	= 8	
x + 5	$= \pm \sqrt{8}$	Square root both sides.
x	$= -5 \pm \sqrt{8}$	Subtract 5 from both sides.
$x = -5 + \sqrt{8}$, $x = -5 - \sqrt{8}$	3	
x = -2.17, $x = -7.83$		

(b)

$$2x^{2} - 5x - 1 = 0$$

$$x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$$

$$a = 2, b = -5, c = -1$$

$$x = \frac{5 \pm \sqrt{(-5)^{2} - (4 \times 2 \times -1)}}{4}$$
quadratic formula, quoting
formula first.
$$= \frac{5 \pm \sqrt{(25 + 8)}}{4} = \frac{5 \pm \sqrt{33}}{4}$$

$$= \frac{5 \pm 5.744 \dots}{4}, \frac{5 - 5.744 \dots}{4}$$

$$x = 2.69, x = -0.186$$
round to 3 sig. figs.
(c)
(2x - 3)^{2} = 7
$$2x - 3 = \pm \sqrt{7}$$
method is to take the
square root
of both sides.
$$2x = 3 \pm \sqrt{7}$$
sides.
$$x = \frac{3 \pm \sqrt{7}}{2}, x =$$
Divide both

$$\frac{3 - \sqrt{7}}{2}$$
sides by 2
$$x = 2.82, x = 0.177$$

Algebraic fractions Exercise A, Question 11

Question:

 $x^2 - 8x - 29 \equiv (x + a)^2 + b$,

where *a* and *b* are constants.

(a) Find the value of *a* and the value of *b*.

(b) Hence, or otherwise, show that the roots of $x^2 - 8x - 29 = 0$ are $c \pm d\sqrt{5}$, where c and d are integers to be found.

Solution:

(a)

 $= (x-4)^2 - 16$ for $x^2 - 8x$ Complete the square $x^2 - 8x$ = (x - 4) $x^2 - 8x - 29$ $^{2} - 16 - 29$ $= (x-4)^2 - 45$ (a = -4 and b = -45)(b) $x^2 - 8x - 29$ = 0Use $(x-4)^2 - 45$ = 0 the result from part (a) $(x-4)^{2}$ = 45 x - 4 $= \pm \sqrt{45}$ the square root of both sides. $x = 4 \pm \sqrt{45}$ $\sqrt{\frac{45}{5}} = \sqrt{9} \times \sqrt{5} = 3$ $= \sqrt{a}\sqrt{b}$ Use $\sqrt{(ab)}$ Roots are $4 \pm 3\sqrt{5}$ (c = 4 and d = 3)

© Pearson Education Ltd 2008

Take

Algebraic fractions Exercise A, Question 12

Question:

Given that

f (x) = $x^2 - 6x + 18$, $x \ge 0$,

(a) express f(x) in the form $(x - a)^2 + b$, where a and b are integers.

The curve *C* with equation y = f(x), $x \ge 0$, meets the *y*-axis at *P* and has a minimum point at *Q*.

(b) Sketch the graph of C, showing the coordinates of P and Q.

The line y = 41 meets *C* at the point *R*.

(c) Find the x-coordinate of R, giving your answer in the form $p + q\sqrt{2}$, where p and q are integers.

Solution:

(a)			
f(x)	$= x^2 - 6x + 18$		
$x^2 - 6x$	$= (x-3)^2 - 9$	for $x^2 - 6x$	Complete the square
$x^2 - 6x + 18$	= (x - 3) $x^{2} - 9 + 18$		
	$= (x-3)^{2}+9$		
(a = 3 and b = 9)			
(b)			
$y = x^2 - 6x + 18$			
$y = (x - 3)^2 + 9$			
$(x-3)^2 \ge 0$		Squarin result	g a number cannot give a negative
The minimum value when $x = 3$.	of $(x-3)^2$ is zero,		
So the minimum valu when $x = 3$.	ue of y is $0 + 9 = 9$,		
Q is the point (3, 9)			
The curve crosses the	e y-axis where $x = 0$.		
For $x = 0$, $y = 18$			
P is the point (0, 18)			
		For $y = ax$	$x^{2} + bx + c$, if
The graph of $y = x^2$ -	-6x + 18 is a 2	shape. $a > 0$, the second state of the secon	e shape is

Algebraic fractions Exercise A, Question 13

Question:

Given that the equation $kx^2 + 12x + k = 0$, where k is a positive constant, has equal roots, find the value of k.

Solution:

$Kx^2 + 12x + K = 0$		
a = K, $b = 12$, $c = K$	Write down the values of a , b and c	
For equal roots, $b^2 = 4ac$	for the quadratic	
(or $b^2 - 4ac = 0$)	equation.	
12^2	$= 4 \times K \times K$	
$4K^2$	= 144	
K^2	= 36	
Κ	$= \pm 6$	
So K	= 6	The question says that K is a positive constant.

Algebraic fractions Exercise A, Question 14

Question:

Given that

 $x^{2} + 10x + 36 \equiv (x + a)^{2} + b$,

where a and b are constants,

(a) find the value of a and the value of b.

(b) Hence show that the equation $x^2 + 10x + 36 = 0$ has no real roots.

The equation $x^2 + 10x + k = 0$ has equal roots.

(c) Find the value of *k*.

(d) For this value of k, sketch the graph of $y = x^2 + 10x + k$, showing the coordinates of any points at which the graph meets the coordinate axes.

Solution:

(a) $x^2 + 10x + 36$ $x^2 + 10x = (x+5)^2 - 25$ Complete the square for $x^2 + 10x$ $x^{2} + 10x + 36 = (x + 5)^{2} - 25 + 36$ $= (x+5)^{2} + 11$ a = 5 and b = 11(b) $x^2 + 10x + 36$ = 0'Hence' implies that part (a) must be $(x+5)^{2}+11$ = 0used $(x+5)^{2}$ = -11A real number squared cannot be negative, : no real roots (c) $x^2 + 10x + K = 0$ a = 1, b = 10, c = KFor equal roots, $b^2 = 4ac$ 10^{2} $= 4 \times 1 \times K$ 4K= 100K = 25 (d)

PhysicsAndMathsTutor.com

© Pearson Education Ltd 2008

Algebraic fractions Exercise A, Question 15

Question:

$$x^{2} + 2x + 3 \equiv (x + a)^{2} + b$$
.

(a) Find the values of the constants a and b.

- (b) Sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes.
- (c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b).

The equation $x^2 + kx + 3 = 0$, where k is a constant, has no real roots.

(d) Find the set of possible values of *k*, giving your answer in surd form.

Solution:

(a) $x^2 + 2x + 3$ $x^{2} + 2x$ = $(x + 1)^{2} - 1$ for $x^{2} + 2x$ $x^{2} + 2x + 3 = (x + 1)$ 2 - 1 + 3 $= (x+1)^{2} + 2$ a = 1 and b = 2

The graph of $y = x^2 + 2x + 3$ is a shape

x = 0: y = 0 + 0 + 3

Meets y-axis at (0, 3)

Put x = 0 to find intersections with the y-axis,

= -2

y = 0: $x^2 + 2x + 3$ = 0 $(x+1)^{2}+2$ = 0 $(x+1)^{2}$

A real number squared cannot be negative, ∴

no real roots, so no intersection with *x*-axis.

For
$$y = ax^2 + bx + c$$
,
if $a > 0$, the shape is

and y = 0 to find intersections with the *x*-axis.

Complete the square

real roots: $b^2 < 4ac$

has no real roots, so the graph

does not cross the *x*-axis.

(d)

$$x^{2} + kx + 3 = 0$$

 $a = 1, b = k, c = 3$
For no real roots, $b^{2} < 4ac$
 $K^{2} < 12$
 $K^{2} - 12 < 0$

$$(K + \sqrt{12}) (K - \sqrt{12}) < 0$$

The minimum value of $(x + 1)^2$ is

zero, when x = -1, so the minimum point on the graph is at x = -1

discriminant is $b^2 - 4ac$

No

This is a quadratic inequality with critical values $-\sqrt{12}$ and $\sqrt{12}$

The

Critical values:

$$K = -\sqrt{12}, K = \sqrt{12}$$

$$-\sqrt{12} < K < \sqrt{12}$$

$$(\sqrt{12} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3})$$

$$(-2\sqrt{3} < K < 2\sqrt{3})$$

$$\sqrt{(ab)} = \sqrt{a}\sqrt{b}$$

© Pearson Education Ltd 2008

The surds can be simplified using

Algebraic fractions Exercise A, Question 16

Question:

Solve the simultaneous equations

$$x + y = 2$$
$$x^2 + 2y = 12$$

Solution:

n = 2 r	Rearrange			
y - z - x	the linear equation to g	et $y =$		
$x^2 + 2(2 - x)$	= 12		into the quadratic equati	Substitute
$x^2 + 4 - 2x$	= 12			
$x^2 - 2x + 4 - 12$	= 0			
$x^2 - 2x - 8$	= 0			
(x+2)(x-4)	= 0		for x using factorisatio	Solve n
x = -2 or $x = 4$				
x = -2: y = 2 -		Substitute		
(-2) = 4	the x values back into	y = 2 - x		
x = 4: $y = 2 - 4 = -2$				
Solution: $x = -2$, $y = 4$				
and $x = 4$, $y = -2$				

Algebraic fractions Exercise A, Question 17

Question:

(a) By eliminating *y* from the equations

y = x - 4, $2x^2 - xy = 8$,

show that

 $2x^{-} - xy = 0$ $x^{2} + 4x - 8 = 0.$

(b) Hence, or otherwise, solve the simultaneous equations

y = x - 4, $2x^2 - xy = 8$, giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

Solution:

(a)

$$2x^2 - x$$
 = 8 equation.
 $2x^2 - x^2 + 4x = 8$
 $x^2 + 4x - 8 = 0$

Substitute y = x - 4 into the quadratic

= 0

 $x^{2} + 4x = (x + 2)^{2} - 4$ (x + 2)^{2} - 4 - 8 = 0

= 12 $= \pm \sqrt{12}$

 $= -2 \pm \sqrt{12}$ $= \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ $= -2 \pm 2\sqrt{3}$

 $x^2 + 4x - 8$

 $(x+2)^{-2}$

x + 2

х

 $\sqrt{12}$ x

(a). The $\sqrt{3}$	Solve the equation found in part
factorisation	in the given answer suggests that
quadratia	will not be possible, so use the
quadratic	formula, or complete the square.

Complete the	square for	x^2	+	4 <i>x</i>
--------------	------------	-------	---	------------

Use	(<i>ab</i>)	$= \sqrt{a}\sqrt{b}$

(a = -2 and b = 2)Using y = x - 4, $= (-2 \pm 2\sqrt{3})$ $= -6 \pm 2\sqrt{3}$ Solution: x $= -2 \pm 2\sqrt{3}$ $= -6 \pm 2\sqrt{3}$ © Pearson Education Ltd 2008

Algebraic fractions Exercise A, Question 18

Question:

Solve the simultaneous equations

$$2x - y - 5 = 0$$
$$x^2 + xy - 2 = 0$$

Solution:

y = 2x - 5	the linear	Rearrange		
	get $y =$	equation to		
$x^2 + x (2x - 5) - 2$	= 0		S into the quadratic equation	bubstitute
$x^2 + 2x^2 - 5x - 2$	= 0			
$3x^2 - 5x - 2$	= 0			
(3x+1)(x-2)	= 0		for x using factorisation	olve
$x = -\frac{1}{3}$ or x	= 2			
$x = -\frac{1}{3}: y = -$	the construction	Substitute		
$\frac{2}{3} - 5 = -\frac{17}{3}$	the x values			
x = 2: $y = 4 - 5 = -1$	into $y = 2x - 5$	back		
Solution $x = -$				
$\frac{1}{3}$, $y = -\frac{17}{3}$				
and $x = 2$, $y = -1$				

Algebraic fractions Exercise A, Question 19

Question:

Find the set of values of x for which

(a) 3 (2x + 1) > 5 - 2x ,

(b) $2x^2 - 7x + 3 > 0$,

(c) both 3 (2x + 1) > 5 - 2x and $2x^2 - 7x + 3 > 0$.

Solution:

(a) 3 (2x + 1) > 5 - 2x 6x + 3 > 5 - 2x 6x + 2x + 3 > 5 8x > 2 $x > \frac{1}{4}$

(b)

$$2x^{2} - 7x + 3 = 0$$

$$(2x - 1)$$

$$(x - 3) = 0$$
 quadratic equation.

$$x = \frac{1}{2}, x = 3$$

 $2x^2 - 7x + 3 > 0 \text{ where } \text{the part}$ $x < \frac{1}{2} \text{ or } x > 3$

Multiply out Add 2x to both sides. Subtract 3 from both sides

Divide both sides by 8

Factorise to solve the

$$2x^2 - 7x + 3 > 0$$
 ($y > 0$) for

of the graph above the *x*-axis

Algebraic fractions Exercise A, Question 20

Question:

Find the set of values of x for which

(a)
$$x (x-5) < 7x - x^2$$

(b) x (3x + 7) > 20

Solution:

(a) $x(x-5) < 7x - x^2$ $x^2 - 5x < 7x - x^2$ $2x^2 - 12x < 0$ 2x(x-6) < 0

2x(x-6) = 0x = 0, x = 6

 $2x^2 - 12x < 0$ where 0 < x < 6

(b) x (3x + 7) > 20 $3x^2 + 7x > 20$ $3x^2 + 7x - 20 > 0$ (3x - 5) (x + 4) > 0 (3x - 5) (x + 4) = 0 $x = \frac{5}{3}, x = -4$ Multiply out

Factorise using the common factor 2xSolve the quadratic equation to find the critical values

Sketch the graph of $y = 2x^2 - 12x$

 $2x^2 - 12x < 0$ (y < 0) for the part of the graph below the *x*-axis

Multiply out

Factorise Solve the quadratic equation to

find the critical values

© Pearson Education Ltd 2008

Sketch the graph of $y = 3x^2 + 7x - 20$

$$3x^2 + 7x - 20 > 0$$
 ($y > 0$)

for the part of the graph above the *x*-axis.

Algebraic fractions Exercise A, Question 21

Question:

(a) Solve the simultaneous equations

$$y + 2x = 5$$
,
 $2x^2 - 3x - y = 16$.

(b) Hence, or otherwise, find the set of values of x for which $2x^2 - 3x - 16 > 5 - 2x$.

Solution:

(a)

y = 5 - 2x	the linear equation get $y = \dots$	Rearrange to		Substitute
$2x^{2} - 3x - (5 - 2x)$ $2x^{2} - 3x - 5 + 2x$	= 16 = 16		into the quadratic equation.	
$2x^2 - 3x - 3 + 2x$ $2x^2 - x - 21$	= 0			~ .
(2x-7)(x+3)	= 0		for x using factorisation.	Solve
$x = 3\frac{1}{2}$ or $x = -3$				
x = 3 $\frac{1}{2}: y = 5 - 7 = -2$	the <i>x</i> -values back into	Substitute		
x = -3: $y = 5 + 6 = 11Solution x = 3\frac{1}{2}, y = -2and x = -3, y = 11$		y = 5 - 2x		
(b) The equations in (a) could by $y = 5 - 2x$ and $y = 2x^2 - 3x^2$. The solutions to $2x^2 - 3x - 3x^2$ are the x solutions from (a) critical values for $2x^2 - 3x$. Critical values $x = 3\frac{1}{2}$ and $x = -3$. $2x^2 - 3x - 16 > 5 - 2x$ ($2x^2 - 3x - 16 - 5 + 2x > 2x^2 - x - 21 > 0$	be written as 3x - 16. -16 = 5 - 2x). These are the -16 > 5 - 2x. 0)			

PhysicsAndMathsTutor.com

Sketch the graph of
$$y = 2x^2 - x - 21$$

$$2x^2 - x - 21 > 0$$
 ($y > 0$) for the part of the graph above the *x*-axis.

Algebraic fractions Exercise A, Question 22

Question:

The equation $x^2 + kx + (k+3) = 0$, where k is a constant, has different real roots.

(a) Show that $k^2 - 4k - 12 > 0$.

(b) Find the set of possible values of *k*.

Solution:

(a) $x^{2} + kx + (k+3) = 0$ a = 1, b = k, c = k+3 $b^{2} > 4ac$ $k^{2} > 4 (k+3)$ $k^{2} > 4k + 12$ $k^{2} - 4k - 12 > 0$

(b) $k^{2} - 4k - 12 = 0$ equation. (k + 2) = 0 k = -2, k = 6y y of $y = k^{2} - 4k - 12$.

Write down a, b and c for the equation

For different real roots, $b^2 > 4ac$

Factorise to solve the quadratic

Sketch the graph

The shape is The sketch does not need to be accurate

 $k^2 - 4k - 12 > 0$ (y > 0) for the part of the graph above the *k*-axis.

$$k^2 - 4k - 12 > 0$$
 where $k < -2$ or $k > 6$

Algebraic fractions Exercise A, Question 23

Question:

Given that the equation $kx^2 + 3kx + 2 = 0$, where k is a constant, has no real roots, find the set of possible values of k.

Solution:

 $kx^2 + 3kx + 2 = 0$ Write a = k, b = 3k, c = 2 down a, b and c for the equation. $b^2 < 4ac$ For $(3k)^2 < 4 \times k \times 2$ no real roots, $b^2 < 4ac$. $9k^2 < 8k$ $9k^2 - 8k < 0$ $9k^2 - 8k$ = 0Factorise k(9k-8)= 0to solve the quadratic equation k = 0, $k = \frac{8}{9}$ Sketch the graph of $y = 9k^2 - 8k$. The shape is The sketch does not need to be accurate . 0 K 8 9 $9k^2 - 8k < 0$ where $9k^2 - 8k < 0$ (y < 0) for the part $0 < k < \frac{8}{9}$ of the graph below the *k*-axis.

Algebraic fractions Exercise A, Question 24

Question:

The equation $(2p + 5) x^2 + px + 1 = 0$, where p is a constant, has different real roots.

(a) Show that $p^2 - 8p - 20 > 0$

(b) Find the set of possible values of *p*.

Given that p = -3,

(c) find the exact roots of $(2p+5)x^2 + px + 1 = 0$.

= 0

= 0 equation.

10

D

Solution:

(a)

(b)

 $p^2 - 8p - 20$

(p+2)

(*p* – 10)

-2

 $p^2 - 8p - 20 > 0$ where

p < -2 or p > 10

p = -2, p = 10

 $(2p + 5) x^{2} + px + 1 = 0$ a = 2p + 5, b = p, c = 1 $b^{2} > 4ac$ $p^{2} > 4 (2p + 5)$ $p^{2} > 8p + 20$ $p^{2} - 8p - 20 > 0$

Write down a, b and c for the equation.

For different real roots, $b^2 > 4ac$

Factorise to solve the quadratic

 $p^2 - 8p - 20 > 0$ (y > 0) for the part of the graph above the *p*-axis

(c)

For $p = -3$				
$(-6+5)x^2-3x+1$	= 0		the equation.	Substitute $p = -3$ into
$-x^2 - 3x + 1$	= 0			Multiply by -1
$x^2 + 3x - 1$	= 0		factorise,	The equation does not
a = 1, $b = 3$, $c = -1$	quadratics fo	so use the rmula.		
$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$	formula.	Quote the		
$x = \frac{-3 \pm \sqrt{9+4}}{2}$				
$x = \frac{1}{2} (-3 \pm \sqrt{13})$	are required.	Exact roots		
$\sqrt{13}$ cannot be simplified.				
$x = \frac{1}{2}(-3 + \sqrt{13})$ or $x =$				
$\frac{1}{2}(-3-\sqrt{13})$				

Algebraic fractions Exercise A, Question 25

Question:

(a) Factorise completely $x^3 - 4x$

(b) Sketch the curve with equation $y = x^3 - 4x$, showing the coordinates of the points where the curve crosses the *x*-axis.

(c) On a separate diagram, sketch the curve with equation $y = (x - 1)^{3} - 4(x - 1)$ showing the coordinates of the points where the curve crosses the *x*-axis.

Solution:

(a)	
$x^3 - 4x$	x is a common factor
$= x (x^2 - 4)$ squares	$(x^2 - 4)$ is a difference of
= x (x + 2) (x - 2)	
(b)	
Curve crosses <i>x</i> -axis where $y = 0$	
x(x+2)(x-2) = 0	Put $y = 0$ and solve for x
x = 0, $x = -2$, $x = 2$	
When $x = 0$, $y = 0$	Put $x = 0$ to find where the
curve crosses	
the y-axis.	
When $x \to \infty$, $y \to \infty$	Check what happens to y fo
When $x \to -\infty$, $y \to -\infty$	positive and negative values of <i>x</i>

Crosses at (0, 0) Crosses *x*-axis at (-2, 0), (2, 0).

(c)

$$y = x^3 - 4x \tag{b}$$

 $y = (x - 1)^{3} - 4(x - 1)$ This is a translation of +1 in the *x*-direction.

Crosses x-axis at (-1, 0), (1, 0), (3, 0)

© Pearson Education Ltd 2008

 $(\ b$).

Compare with the equation from part

- x has been replaced by x 1.
- f(x+a) is a translation of
- -a in the x-direction.

The shape is the same as in part (b).

Algebraic fractions Exercise A, Question 26

Question:

The figure shows a sketch of the curve with equation y = f(x). The curve crosses the *x*-axis at the points (2, 0) and (4, 0). The minimum point on the curve is P(3, -2).

In separate diagrams, sketch the curve with equation

(a) y = -f(x)

(b) y = f(2x)

On each diagram, give the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation.

Solution:

The transformation -f(x) multiplies the *y*-coordinates by -1. This turns the graph upside-down.

Crosses the x-axis at (2,0), (4,0)Image of P is (3,2)

f(2x) is a stretch of $\frac{1}{2}$ in the *x*-direction. (Multiply

x-coordinates by $\frac{1}{2}$.)

Crosses the x-axis at (1,0), (2,0)

Image of *P* is $(1\frac{1}{2}, -2)$

unchanged.

y-coordinates are

Algebraic fractions Exercise A, Question 27

Question:

The figure shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the *x*-axis at the point (1, 0).

On separate diagrams, sketch the curve with equation

(a) y = f(x + 1)

(b) y = 2f(x)

(c)
$$y = f\left(\begin{array}{c} \frac{1}{2}x\end{array}\right)$$

On each diagram, show clearly the coordinates of all the points where the curve meets the axes.

Solution:

(a)

f(x+1) is a translation of

Meets the x-axis at (0,0), (3,0)Meets the y-axis at (0,0)

Meets the x-axis at (1, 0), (4, 0) unchanged. Meets the y-axis at (0, 6)

-1 in the *x*-direction.

2f(x) is a stretch of scale factor 2 in the y-direction (Multiply y-coordinates by 2)

x-coordinates are

 $f(\frac{1}{2}x)$ is a stretch of scale factor $\frac{1}{(\frac{1}{2})} = 2$ in the *x*-direction. (Multiply *x*-coordinates by 2) Meets the x-axis at (2, 0), (8, 0)

Meets the y-axis at (0,3)

unchanged.

y-coordinates are

Algebraic fractions Exercise A, Question 28

Question:

Given that

f
$$\begin{pmatrix} x \end{pmatrix} = \frac{1}{x}, \quad x \neq 0$$

(a) sketch the graph of y = f(x) + 3 and state the equations of the asymptotes.

(b) Find the coordinates of the point where y = f(x) + 3 crosses a coordinate axis.

Solution:

You should know the shape of this curve.

f(x) + 3 is a translation of + 3 in the y-direction.

y = 3 is an asymptote x = 0 is an asymptote

is x = 0

The equation of the *y*-axis

(b)

The graph does not cross	get	If you used $x = 0$ you would
the y-axis (see sketch in (a)).	undefined,	$y = \frac{1}{0} + 3$ but $\frac{1}{0}$ is
Crosses the <i>x</i> -axis where $y = 0$:		or infinite.
$\frac{1}{x} + 3$	= 0	
$\frac{1}{x}$	= -3	
x	$= -\frac{1}{3} (-\frac{1}{3}, 0)$	

Algebraic fractions Exercise A, Question 29

Question:

Given that $f(x) = (x^2 - 6x) (x - 2) + 3x$,

(a) express f(x) in the form x ($ax^2 + bx + c$), where a, b and c are constants

(b) hence factorise f(x) completely

(c) sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes

Solution:

(a)

f(x)	$= (x^2 - 6x) (x - 2) + 3x$	c out the bracket	Multiply
	$= x^{2} (x - 2) - 6x (x - 2) + 3x$		
	$= x^3 - 2x^2 - 6x^2 + 12x + 3x$		
	$=x^3 - 8x^2 + 15x$	common factor	x is a
	$= x (x^2 - 8x + 15)$		
(a = 1, b = -8, c = 15)			
(b)			
$x(x^2-8x+15)$		Factorise the o	quadratic
f(x) = x(x-3)(x-5)			
(c)			
Curve meets x-axis where $y = 0$			
x(x-3)(x-5) = 0		Put $y = 0$ and solve for	or x
x = 0, $x = 3$, $x = 5$		·	
When $x = 0$, $y = 0$		Put $x = 0$ to find when crosses the <i>y</i> -axis	re the curve
		Check what happens to	v for
When $x \to \infty$, $y \to \infty$	large	rr	J -
When $x \to -\infty$, $y \to -\infty$	of x .	positive and negative v	alues

Meets x-axis at (0,0), (3,0), (5,0)Meets y-axis at (0,0)

Algebraic fractions Exercise A, Question 30

Question:

(a) Sketch on the same diagram the graph of y = x (x + 2) (x - 4) and the graph of $y = 3x - x^2$, showing the coordinates of the points at which each graph meets the *x*-axis.

(b) Find the exact coordinates of each of the intersection points of y = x (x + 2) (x - 4) and $y = 3x - x^2$.

Solution:

(a) y = x(x+2)(x-4)Curve meets x-axis where y = 0. x(x+2)(x-4) = 0Put y = 0 and solve for x. x = 0, x = -2, x = 4When x = 0, y = 0Put x = 0 to find where the curve crosses the y-axis When $x \to \infty$, $y \to \infty$ When $x \to -\infty$, $y \to -\infty$ Check what happens to y for large positive and negative values of x. $y = 3x - x^2$ For $y = ax^2 + bx + c$, The graph of $y = 3x - x^2$ is a shape if a < 0, the shape is Put y = 0 and $3x - x^2$ = 0 solve for x. x(3-x)= 0 x=0 , x=3Put x = 0 to When x = 0, y = 0find where the curve crosses the y-axis. У y = x(x + 2)(x - 4)4 -2 3 $y = 3x - x^2$ y = x(x + 2)(x - 4) meets the x-axis at (-2, 0), (0, 0), (4, 0) $y = 3x - x^2$ meets the x-axis at (0, 0), (3, 0)(b) x(x+2)(x-4) $= 3x - x^2$ To find where the graphs intersect, = x (3 - x)x(x+2)(x-4)equate the two expressions for y to give an equation in x. (x+2)(x-4)= 3 - xIf you divide by x, remember that One solution is x = 0x = 0 is a solution. $x^2 - 2x - 8$ = 3 - x $x^2 - 2x + x - 8 - 3$ = 0 $x^2 - x - 11$ = 0 The equation does not factorise, so use the quadratic formula. a = 1, b = -1, c = -11

 $= \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$ = $\frac{1 \pm \sqrt{(-1)^2 - (4 \times 1 \times -11)}}{2}$ = $\frac{1 \pm \sqrt{45}}{2}$ = $\sqrt{9}\sqrt{5} = 3\sqrt{5}$ Quote the formula х х Exact values are required, not rounded **√**45 decimals, so leave the answers in surd form. $=\frac{1}{2}(1\pm 3\sqrt{5})$ x $x = \frac{1}{2} (1 + 3\sqrt{5}) \text{ or } x = \frac{1}{2} (1 - 3\sqrt{5})$ x = 0 : y = 0The *y*-coordinates for the intersection $=\frac{1}{2}(1+3\sqrt{5})$ points are also needed. х $= \frac{3(1+3\sqrt{5})}{2} - \frac{(1+3\sqrt{5})^2}{4}$ Use $y = 3x - x^2$, the simpler equation y $(1+3\sqrt{5})^{2} = (1+3\sqrt{5}) (1+3\sqrt{5})$ = 1 (1+3\sqrt{5}) + 3\sqrt{5} (1+3\sqrt{5}) = 1+3\sqrt{5}+3\sqrt{5} (1+3\sqrt{5}) = 1+3(5+3)(5+45) $\sqrt{5} \times \sqrt{5} = 5$ $= 1 + 5\sqrt{5} + 5\sqrt{5} + 45$ $= 46 + 6\sqrt{5}$ $= \frac{6(1+3\sqrt{5})}{4} - \frac{46+6\sqrt{5}}{4}$ $= \frac{6+18\sqrt{5}-46-6\sqrt{5}}{4}$ y Use a common denominator 4. $= \frac{-40 + 12\sqrt{5}}{4} = -10 + 3\sqrt{5}$ $=\frac{1}{2}(1-3\sqrt{5})$ х $= \frac{3(1-3\sqrt{5})}{2} - \frac{(1-3\sqrt{5})^2}{4}$ $= \frac{6(1-3\sqrt{5})}{4} - \frac{46-6\sqrt{5}}{4}$ y The working will be similar to y that for $1 + 3\sqrt{5}$, so need not be fully repeated. $= \frac{6 - 18\sqrt{5} - 46 + 6\sqrt{5}}{4}$ $= \frac{-40 - 12\sqrt{5}}{4} = -10 - 3$ Intersection points are : Finally, write down the coordinates of all the (0,0) , $(\frac{1}{2}(1+3\sqrt{5})$, $-10+3\sqrt{5}$) points you have found. You can compare these with your sketch, as a rough check. and $(\frac{1}{2}(1-3\sqrt{5}), -10-3\sqrt{5})$